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For astrophysical calculations, it is customary to extrapolate higher-energy 
(~>20 keV) data using the Gamow transmission eoetticient in estimating the 
nonresonance nuclear fusion reaction cross sections a(E) for charged particles at 
low energies ( <20 keV). We present a general extrapolation method based on a 
more realistic Coulomb barrier transmission coefficient, which can accommo- 
date simultaneously both nonresonance and resonance contributions. 

The solar neutrino flux is calculated using low-energy nuclear fusion 
cross sections a(E) as input data. Since a(E) values at solar energies 
( ~< 20 keV) cannot be measured in the laboratory, they are extracted from 
the laboratory measurements of  a(E) at higher energies by an extrapolation 
procedure based on nuclear theory. However, the energy dependence of  the 
nuclear reaction cross section a(E) cannot be obtained rigorously from first 
principles, since the many-nucleon scattering problem cannot be solved 
exactly even if the nucleon-nucleon force is given. Therefore, one must rely 
on physically reasonable model-dependent parametrization procedure 
based on a barrier transmission model (BTM). Such a procedure has been 
used extensively in astrophysical problems (Fowler et al., 1967) involving 
the Gamow transmission coefficient for the Coulomb barrier (Gamow, 
1928; Blatt and Weisskopf, 1952). In this paper, we present a more general 
and realistic barrier transmission model which can accommodate simulta- 
neously both nonresonance and resonance contributions for extrapolating 
tr(E) to lower energies. 

The experimental results from 1968 to 1986 from the 37C1 neutrino 
detector (the world's only solar neutrino detector in that period) in the 
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Homestake Mine (Davis, 1986, 1987) initiated one of the most puzzling 
and long-lasting problems of modem physics, known as the missing solar 
neutrino flux problem, or more simply the solar neutrino problem. The 
processes p + 7Be~SB + y and 8B ~8Be* + e + + ve(< 15 MeV) produce 
neutrinos to which the 37C1 detector (Rowley, 1985; Davis, 1986, 1987) at 
Homestake Mine is sensitive. The average total rates of solar neutrino 
(electron type, re) interactions RC~(exp) have been measured there by 
means of the reaction v~ +37C1---~e-+37mr from 1970 to the present. 
More recently, a real-time, directional solar-neutrino signal has been 
observed in the water Cherenkov detector Kamiokande-II (KAM-II) 
(Hirata et aL, 1989), which is sensitive mostly to 8B~SBe*+e+ + 
vr MeV). Of the many experiments that have been conducted, the 
experimental neutrino deficit is a factor of 2-3 times lower than the 
accepted prediction from the standard solar model (SSM) (Bahcall and 
Ulrich, 1988; Bahcall et al., 1988; Bahcall, 1989). The much newer 71Ga 
detectors in the Gran Sasso Laboratory in Italy (GALLEX collaboration) 
(Anselmann et al., 1992) and for the Soviet-American Gallium Experiment 
(SAGE) at Baksan in the former Soviet Union (Abazov et aL, 1991; 
Garvin et aL, 1992) have better detection efficiency. Although the new 
detectors are lessening the deficit, it has not disappeared. 

The SSM has been successful in relating the mass and composition of 
the sun to its luminosity and lifetime. The SSM has also been widely 
accepted, as it appears to be based upon well-understood nuclear physics. 
However, this has included approximations that are inconclusively estab- 
fished both for higher energies and for the solar energy regime. In fact, the 
SSM has appeared to work so well that the preponderance of attempted 
theoretical solutions have been directed at the neutrinos, rather than 
nuclear physics input for the SSM. Of many proposed hypotheses for 
solving the solar neutrino problem, the neutrino oscillation hypothesis 
appears to be most popular (Kuo and Pantaleone, 1989; Bahcall, 1989). 
However, it is also desirable to reexamine the accuracies of the nuclear 
physics input. 

Previous low-energy (<20  keV) a(E) for nonresonance reactions in- 
volving charged particles used in the standard solar model calculations 
(Bahcall and Ulrich, 1988; Bahcall and Pinsonneault, 1992) are calculated 
by extrapolating the experimental values of a(E) at higher energies using 
the parametrization (Fowler et al., 1967) 

S(E) 
~(E) = -- i f -  r~(E) (1) 

where Tr(E)  = exp[-(Eo/E)1/2], EG = (2rr~tZlZ:)2pc2/2, with the reduced 
mass g = m~m2/(mt + m2) and E is the center-of-mass (CM) kinetic energy. 
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The transmission coefficient ("Gamow" factor) To(E) results from the 
approximation E ~ B (Coulomb barrier height). 

In order to generalize the conventional Gamow transmission co- 
efficient, we introduce for the fusing system the following potential, which 
consists of an interior square-well nuclear potential and an exterior repul- 
sive potential: 

V(r) = { -  Vo r < R 
ZlZ2e2/r, r > R (2) 

For the potential barrier given by equation (2), an approximate 
S-wave (l = 0) solution for T(E) can be calculated in the Wentzel- 
Kramers-BriUouin (WKB) approximation as (Kim et al., 1993) 

TWKB(E)=exp{--2(~)l/2f:"( Z'Z2e2 E)l/2dr } 

X - -  a ' G  
= e  p(  (E )1 /2  ~][(2~c~ B] d \B]  (1 - -E) l /2} )  

(3) 

where B = ZI Z2e2/R and r a is the classical turning point, ZiZ2eE/ra = E. 
Note that TwKB(E) is defined only for E < ZIZEe2/R (Coulomb barrier 
height) and TWKB(zIZ2e2/R)= 1. The traditional Gamow transmission 
coefficient used in equation (l) can be obtained from equation (3) with 
R = 0 (or equivalently E ~ B): 

r (e)=rwK"( )=exPL-fi,- J fo E) 1'2 

= exp - (4) 

To obtain improved and more general transmission coefficients, we use 
partial wave solutions of the Schr6dinger equation. For the potential 
described by equation (2), a general solution of the SchrSdinger equation 
for the exterior wave function in the exterior region (r > R) is given by 
(Blatt and Weisskopf, 1952) 

uTXt(r) = au~-)(r) + bu~+)(r) (5) 

where 

u~+)(r) = [exp(-  i6 c )][Gt(r) + iFt(r)] (6) 

6 c is the Coulomb phase shift and u~ -) is complex conjugate of u~ +). Here 
Ft and G t are the regular and irregular Coulomb wave functions normalized 



1864 Kim and Zubarev 

asymptotically (r --+ oo) as 

Ft(r) ~. sin[kr - ln/2 - ~lln(2kr) + 6t c ] 

G,(r) .~ cos[kr - l~/2 - qln(2kr) + <~c] (7) 

where q is the Sommerfeld parameter, ~ = Z1Z2e2/hv, and k is related to E 
by E = h2k2/2#. 

For the interior region (R1-< r < R), where Rl is the range of an 
effective short-range repulsive potential for l > 0 attributable to the repul- 
sive nucleon-nucleon interaction at short distances less than -~0.3 fro, a 
general solution of  the Schrrdinger equation for the interior wave function 
is 

uitnt(r) = U~-)int(r)  "31- ClU~+)int(r) ( 8 )  

with 

and 

U~-)int(r) =- - -  [/~,(Kr) + ijt(Kr)] (9) 

= - - / f , ( K r ) ]  ( 1 0 )  

with fl(x) = xjl(x) and tit(x) -- xnt(x),  where j l (x)  = (~/2x)I/2Jt+ re(x)  and 
nt(x ) = ( - 1 )  t+ l(x/2x)l/2J_ t_ 1/2(x) are the spherical Bessel function and 
spherical Newmann function, respectively. Jr+ i/2(x) is an ordinary Bessel 
function of half-odd-integer order and h2KZ/21t = Vo + E with E = hZk2/21 ~. 
We introduce two real parameters zt and ~bt and write ct = zte ir (zt < 1). 

Using the boundary condition at r = R [i.e., matching the logarithmic 
derivatives of equations (5) and (8)], we obtain the barrier transmission 
coefficient Tt(E) = 1 - Ibt/at 12: 

- 4 s J P i  
T,(E) = [(A, + is,) - ( ~ P ,  + i0r (11) 

where 9~Pt and =aP t are the real and imaginary parts, respectively, of the 
logarithmic derivative P, of ulnt(r): 

R auilnt/ar 
PI = in~"'-'-~- 

HI Ir = R - 

= R { [da, (Kr)/dr]( 1 + ct ) + i[d~+ (Kr) ~dr]( 1 - c, ) }r  = • - 

~,(KR)(1 + c,) +/ft(KR)(1 -- ct ) 

= ~ e ,  + i / P ,  ( J P ,  < 0) (12) 

The quantities st and A t in equation (11) are defined as 

st = R[(GtF'z -- FtG~ )/(G z + F] )], = R (13) 
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and 

A, = R[(G,G~ + F,F~)I(G~ + F 2)1,: R (14) 

respectively. 
Using the new/ th  partial wave transmission coefficient T~(E), equation 

(11), we can write a more general parametrization of  (r(E) in terms of  the 
Ith partial wave cross section at(E) for the fusing system described by the 
potential (2) as 

a(E) = ~ .  ~ ( 2 / +  1)SI(E)Tz(E) = ~ (r,(E) (15) 
i 

where Sz(E) is t he / t h  partial wave S-factor and 

a,(E) = g,(E) T,(E) (16) 
E 

If the lowest partial wave (l = 0) contribution is expected to be 
dominant for low energies (~< 20 keY), then the total cross section a(E) is 
given by 

a(E) ~ a o (E) = ~o(E) To (E) (17) 
E 

and the transmission coefficient is given by To(E) = I -Ibo/aol2: 

-4s0JPo 
T~ = [(Ao + iso) - (MPo + iJPo)[  2 (18) 

where ~Po,  J P o .  so, and Ao are given by equations (12)-(14)  with l = 0. 
The explicit form of  To(E), equation (18), is 

4soK, R 
To(E) = l( Ao + iSo) --(/s R -- iK, R)I z (19) 

where 

So = R[(GoF'o - FoG'o)/(G2o + F2)lr = R (20) 

Ao = R[(GoG'o + FoV'o)/(G 2 + roZ)]r = R (21) 

K(1 - Zo ~) (22) 
/~l = 1 + 22o cos(2KR + q~o) + Zo z 

and 

- 2Kzo sin(2KR + q~o) (23) 
g2 = 1 + 22 o cos(2KR + q~o) + z~ 

To(E), equation (19), described by four parameters, Vo, R, zo, and ~bo, 
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contains both nonresonance and resonance contributions, and also the 
interference term between them. The four parameters can be determined 
from the cross section containing both a resonance part (resonance energy 
and width) and a nonresonance background. 

To(E) has a Breit-Wigner form when (At + iso) - (/r(2R - ig iR)  = 0 
at a pole E = ER -- iF/2 in the complex E. plane. The resonance energy ER 
and width F are determined by the parameters zo and ~bo for fixed values of 
110 and R. The resonance behavior of To(E) generated from fitting tr(E) 
with particular values of parameters is a Coulomb barrier transmission 
(CBT) resonance due to an interplay of Coulomb barrier and nuclear 
interaction, and is to be distinguished from the conventional resonances 
such as narrow neutron capture resonances, which are primarily due to the 
nuclear interaction. The resonances present in a(E) which are shown by 
some related experiments to be of non-CBT type are to be treated by 
conventional methods. Very broad resonance behaviors for cross sections 
observed in many nuclear reactions (Chulick et al., 1993), such as for 
reactions 2H(D,p)3H, 2H(D, n)3He, 3He(D,p)4He, and 3H(D, n)4He, may 
correspond to CBT resonances and may yield different low-energy extrapo- 
lations from those obtained by the use of the conventional transmission 
coefficient To(E), since the low-energy tail of the CBT resonance is 
expected to be different from that of the conventional case. 

For the case of nonresonance cross section, z0 = 0, and To(E), equa- 
tion (19), reduces to the result given by Blatt and Weiskopf (1952), 

4soKR 
TBw(E) = A02 + (So + KR) 2 (24) 

It should be noted that TBw(E), equation (24), does not have a resonance 
structure, while To(E), equation (19), does. 

In the previous parametrizations of tr(E), the resonance part of a(E) is 
parametrized with a Breit-Wigner resonance formula to be subtracted 
from the experimental data (Fowler et al., 1967; Kim et aL, 1993) or 
included in S(E) in equation (1) (Chulick et al., 1993). The nonresonance 
formula (1) is then used to fit the resultant "data". Our more general 
formula for To(E), equation (19), with equation (17), will allow us to 
parametrize the experimental data exhibiting the CBT resonance behavior 
by the same formula, equation (17), thus avoiding separate use of the 
Breit-Wigner formula for subtracting the resonance contribution from 
tr(E). Furthermore, the interference term between the resonance and non- 
resonance contributions is automatically included in equations (17) and 
(19). The formulation described by equations (15)-(17) and (19) is gener- 
alization of equation (1) and thus can provide a more realistic and general 
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parametrization method for low-energy nuclear fusion cross sections 
needed for solar neutrino and astrophysical calculations. 
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